A k -Anonymity Clustering Method for Effective Data Privacy Preservation
نویسندگان
چکیده
Data privacy preservation has drawn considerable interests in data mining research recently. The k-anonymity model is a simple and practical approach for data privacy preservation. This paper proposes a novel clustering method for conducting the k-anonymity model effectively. In the proposed clustering method, feature weights are automatically adjusted so that the information distortion can be reduced. A set of experiments show that the proposed method keeps the benefit of scalability and computational efficiency when comparing to other popular clustering algorithms.
منابع مشابه
Gain Ratio Based Feature Selection Method for Privacy Preservation
Privacy-preservation is a step in data mining that tries to safeguard sensitive information from unsanctioned disclosure and hence protecting individual data records and their privacy. There are various privacy preservation techniques like k-anonymity, l-diversity and t-closeness and data perturbation. In this paper k-anonymity privacy protection technique is applied to high dimensional dataset...
متن کاملA novel local search method for microaggregation
In this paper, we propose an effective microaggregation algorithm to produce a more useful protected data for publishing. Microaggregation is mapped to a clustering problem with known minimum and maximum group size constraints. In this scheme, the goal is to cluster n records into groups of at least k and at most 2k_1 records, such that the sum of the within-group squ...
متن کاملClustering Based K-anonymity Algorithm for Privacy Preservation
K-anonymity is an effective model for protecting privacy while publishing data, which can be implemented by different ways. Among them, local generalization are popular because of its low information loss. But such algorithms are generally computation expensive making it difficult to perform well in the case of large amount of data. In order to solve this problem, this paper proposes a clusteri...
متن کاملImproved Univariate Microaggregation for Integer Values
Privacy issues during data publishing is an increasing concern of involved entities. The problem is addressed in the field of statistical disclosure control with the aim of producing protected datasets that are also useful for interested end users such as government agencies and research communities. The problem of producing useful protected datasets is addressed in multiple computational priva...
متن کاملButterfly: Privacy Preserving Publishing on Multiple Quasi-Identifiers
Recently, privacy preserving data publishing has attracted significant interest in research. Most of the existing studies focus on only the situations where the data in question is published using one quasi-identifier. However, in a few important applications, a practical demand is to publish a data set on multiple quasi-identifiers for multiple users simultaneously, which poses several challen...
متن کامل